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AN UNCERTAINTY-WEIGHTED ASYNCHRONOUS ADMM
METHOD FOR PARALLEL PDE PARAMETER ESTIMATION\ast 

SAMY WU FUNG\dagger AND LARS RUTHOTTO\dagger 

Abstract. We consider a global variable consensus alternating direction method of multipli-
ers (ADMM) algorithm for estimating parameters of partial differential equations (PDEs) asyn-
chronously and in parallel. Motivated by problems with many measurements, we partition the data
and distribute the resulting subproblems among the available workers. Since each subproblem can
be associated with different forward models and right-hand sides, this provides ample options for tai-
loring the method to different applications, including multisource and multiphysics PDE parameter
estimation problems. We also consider an asynchronous variant of consensus ADMM to reduce com-
munication and latency. Our key contribution is a novel weighting scheme that empirically increases
the progress made in early iterations of the consensus ADMM scheme and is attractive when using
a large number of subproblems. This makes consensus ADMM competitive for solving PDE param-
eter estimation, which incurs immense cost per iteration. The weights in our scheme are related to
the uncertainty associated with the solutions of each subproblem. We exemplarily show that the
weighting scheme combined with the asynchronous implementation reduces the time-to-solution and
lowers the communication costs for a 3D single-physics and multiphysics PDE parameter estimation
problems.
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1. Introduction. Recent technological advances have allowed us to collect data
at massive scales with relative ease. This trend, often referred to as big data, has given
rise to notoriously challenging high-dimensional parameter estimation problems. A
common example is the computation of the maximum a posteriori (MAP) estimate
[8, 44] of large-scale Bayesian inverse problems. In this case, the parameter estima-
tion problem is solved iteratively using gradient-based optimization. This requires
numerous simulations that may involve different physical models and commonly scale
to millions of variables [5], leading to very high costs in both CPU time and memory.
As a result, general approaches, such as model order reduction schemes [35, 3, 13],
parallel and distributed schemes [6], and importance sampling and stochastic opti-
mization schemes [49, 36], have become highly desirable, if not necessary, for solving
these types of problems.

In this paper, we focus on parallel and distributed techniques. We consider the
consensus alternating direction method of multipliers (ADMM) [6, 15, 27] as well as its
asynchronous variant (async-ADMM), which aims at reducing latencies and thereby
reduce the time-to-solution [52]. Consensus ADMM has previously been applied to
high-dimensional inverse problems in data sciences [32, 34], statistical learning [6,
15, 47, 51], and imaging [14, 24, 28]. The algorithm tackles large-scale problems by
partitioning the data into, say, N smaller batches that can be solved in parallel, and in
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S130 SAMY WU FUNG AND LARS RUTHOTTO

some cases, explicitly. This often leads to an improved ratio of local computation and
communication. More specifically, each iteration of the algorithm breaks down into
(1) N subproblems using parts of the data that are solved locally and independently,
(2) an averaging step that is performed once all N subproblems have been solved, and
(3) an explicit update of the dual variable. The main change in the async-ADMM
variant is that the averaging step is performed once Na < N subproblems have been
solved, reducing the overall latency.

As we demonstrate in our numerical experiments, a straightforward implementa-
tion of consensus ADMM converges slowly, in particular when the information con-
tained in the split data sets is complementary and the number of batches, N , is large.
One problem in these cases is that the averaging step in consensus ADMM gives equal
weight to all the solutions corresponding to each batch, leading to an uninformed av-
eraged reconstruction. In large-scale problems, such as partial differential equation
(PDE) parameter estimation, this renders consensus ADMM prohibitive since often
only a few iterations are affordable.

To increase the performance of consensus ADMM, particularly in early iterations,
we introduce a novel weighting scheme that improves the convergence of consensus
ADMM. The weights are obtained in a systematic and efficient way using the frame-
work of uncertainty quantification (UQ) proposed in [12]. We demonstrate the effect
of the weights on a collection of linear inverse problems. We also outline the potential
of our method by comparing it to the Gauss–Newton (GN) method [17] and the non-
linear conjugate gradient (NLCG) method [20] on a single-physics PDE parameter
estimation problem involving a travel time tomography survey, and a multiphysics
parameter estimation problem involving direct current resistivity (DCR) and travel
time tomography [48] surveys.

The remainder of the paper is organized as follows. In section 2, we review
the mathematical framework for MAP estimation and UQ as well as numerical op-
timization algorithms for their computations. In section 3, we present the weighted
consensus ADMM method and its asynchronous variant. In section 4, we outline
the potential of our method for a series of numerical experiments, and finally, we
summarize the paper in section 5.

2. Mathematical background and numerical implementation. In this
section, we briefly review the computation of the MAP estimate and principles of
UQ in the context of large-scale Bayesian inverse problems (see, e.g., [8, 44] for a
detailed overview). We limit the discussion to the finite-dimensional case since we
follow the discretize-then-optimize approach; however, an overview of the infinite-
dimensional case can be found in [44]. We also review optimization techniques for
computing the MAP estimate and their associated challenges.

2.1. MAP Estimation and UQ. We consider additive noise-corrupted obser-
vations

Y = \scrF (X) + E,(2.1)

where \scrF :Rn \mapsto \rightarrow Rm is the parameter-to-observable map, and Y,X, and E are random
vectors corresponding to the observations, the model parameter, and the measurement
noise, respectively. In the following, we denote their corresponding realizations by
y \in Rm, x \in Rn, and \bfitepsilon \in Rm.

We employ the prior probability density function (PDF), \pi prior:Rn \mapsto \rightarrow R, which
describes prior information we may have about X, and the likelihood function \pi (y| x),
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UQ-WEIGHTED ADMM FOR PDE PARAMETER ESTIMATION S131

which describes the relationship between the measurements y and the unknown model
parameters x. We use Bayes' theorem to obtain the posterior PDF,

\pi post(x) \propto \pi prior(x)\pi (y| x),(2.2)

and compute the MAP point by maximizing the posterior PDF, that is,

xMAP = argmax
\bfx 

\pi post(x).(2.3)

For simplicity, we assume that X and E are statistically independent, and we limit
the discussion to the case where the prior PDF is Gaussian and E is a random vector
whose entries are independently and identically distributed so that E \sim \scrN (0,\Gamma noise),
where \Gamma noise \in Rm\times m is the diagonal noise-covariance matrix. In this case, the likeli-
hood and prior PDFs are given by

\pi (y| x) \propto exp( - \Phi (x)) and \pi prior(x) \propto exp( - \scrR (x)),(2.4)

respectively, where, due to the assumptions above,

\Phi (x) =
1

2
\| \scrF (x) - y\| 2

\bfGamma  - 1
noise

and \scrR (x) = 1

2
\| x - xref\| 2\bfGamma  - 1

prior

.(2.5)

Here, xref is the mean of the model parameter prior PDF, and \Gamma prior \in Rn\times n is the
covariance matrix of the prior PDF. Using (2.2) and (2.4), we can restate the posterior
PDF in closed form as

\pi post(x) \propto exp
\Bigl( 
 - \Phi (x) - \scrR (x)

\Bigr) 
,(2.6)

and the MAP estimate can then be found by solving

xMAP = argmin
\bfx 

\Bigl( 
\Phi (x) +\scrR (x)

\Bigr) 
.(2.7)

When \scrF is a linear operator, that is, \scrF = A \in Rm\times n, the posterior PDF is also
Gaussian, and we can write its covariance matrix \Gamma post \in Rn\times n in closed form as

\Gamma post = (A\top \Gamma  - 1
noiseA+ \Gamma  - 1

prior)
 - 1,(2.8)

which can be used for quantifying uncertainties of the model parameter x. In the
context of large-scale PDE parameter estimation, however, the matrix A, let alone
its inverse, is seldom constructed. The computation of \Gamma post is intractable, and we
therefore follow [12] and use an iterative method to obtain an approximation in sec-
tion 3.2.

2.2. Numerical optimization. In large-scale PDE parameter estimation, we
are concerned with the case where massive amounts of data are available, leading to
numerous right-hand sides and potentially multiple PDEs [19, 48]. Here, we split the
misfit function in (2.5) into N terms, i.e.,

(2.9) \Phi (x) =
N\sum 
j=1

\Phi j(x), where \Phi j(x) =
1

2
\| \scrF j(x) - yj\| 2\bfGamma  - 1

j,noise

,
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S132 SAMY WU FUNG AND LARS RUTHOTTO

Algorithm 2.1 Gauss–Newton

\bullet initialize x(0)

\bullet for k = 0, 1, 2, . . .
1. compute \Phi 1(x

(k)), . . . ,\Phi N (x(k)) and \nabla \bfx \Phi 1(x
(k)), . . . ,\nabla \bfx \Phi N (x(k))

2. solve system (2.11) to obtain \delta x using PCG
3. set x(k+1) = x(k) + \gamma \partial x, where \gamma is set by Armijo linesearch
4. check convergence criteria

where \scrF j :Rn \mapsto \rightarrow Rmj and yj \in Rmj correspond to the jth forward operator and
right-hand side, respectively, and \Gamma j,noise \in Rmj\times mj is the noise covariance matrix
corresponding to the jth misfit term. This allows us to rephrase (2.7) as

(2.10) xMAP = argmin
\bfx 

N\sum 
j=1

\Phi j(x) +\scrR (x),

where, for simplicity, we assume that the different right-hand sides are statistically in-
dependent, which allows us to decouple the posterior. There are many ways to exploit
the structure of (2.10), including stochastic optimization methods, e.g., stochastic
approximation [37], stochastic average approximation [29], and the method of simul-
taneous sources [18]. Here, we are interested in deterministic optimization methods
(potentially applied to a stochastic average approximation or the reduced problem
in [18]). Common choices include steepest descent (SD), quasi-Newton methods such
as l-BFGS [50], nonlinear conjugate gradient (NLCG) methods [20, 21], and GN
methods [17, 50]. We limit the discussion in this section to the GN-PCG and NLCG
methods.

When applying the GN-PCG algorithm to (2.10), the Hessian of an approximated
objective function with linearized parameter-to-observable map is used as the coef-
ficient matrix in the Newton system. The search direction, \partial x \in Rn, is computed
approximately by applying a preconditioned conjugate gradient (PCG) method (see,
e.g., [40]) to the linear system\left(  N\sum 

j=1

J\top 
j \Gamma 

 - 1
j,noiseJj +\nabla 2

\bfx \scrR (x)

\right)  \partial x =  - 
N\sum 
j=1

\nabla \bfx \Phi j(x) - \nabla \bfx \scrR (x)(2.11)

(see Algorithm 2.1, step 2), where Jj \in Rmj\times n is the Jacobian matrix of the jth
parameter-to-observable map \scrF j . Although the gradients and matrix vector products
with the approximated Hessian in (2.11) can be computed in parallel, solving the
linear system efficiently is nontrivial. To limit the communication overhead, one
can use the static scheduling approach described in [39]. Here, the model and a
number of meshes, sources, receivers, and forward problems are assigned to all the
workers in the offline phase. Then, to evaluate the misfit and the gradient, and to
perform a Hessian matrix-vector product, each worker computes its corresponding
batch of gradients and Hessian matrix-vector products, and communicates it to the
main process. Consequently, every inner PCG iteration used to solve (2.11) requires
sending the current iterate for the search direction to the workers and receiving the
results from local matrix-vector products. For large-scale problems this can result
in a nontrivial amount of communication, especially when many PCG iterations are
needed. Moreover, if the data is divided unevenly among the workers, the algorithm
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UQ-WEIGHTED ADMM FOR PDE PARAMETER ESTIMATION S133

Algorithm 2.2 NLCG

\bullet initialize x(0)

\bullet set p(0) =  - \nabla \bfx f(x
(0)), where f(x) =

\sum N
j=1 \Phi j(x) +\scrR (x)

\bullet for k = 0, 1, 2, . . .
1. update x(k+1) \leftarrow x(k) + \gamma \partial x(k), where \gamma is set by a linesearch
2. compute \nabla \bfx f(x

(k+1))
3. set d(k) = \nabla \bfx f(x

(k+1)) - \nabla \bfx f(x
(k))

4. compute \beta (k) =
1

(\partial x(k))\top d(k)

\biggl( 
d(k)  - \partial x(k) 2\| d(k)\| 2

(\partial x(k))\top d(k)

\biggr) 
\nabla \bfx f(x

(k+1))

5. update \partial x(k+1) =  - \nabla \bfx f(x
(k+1)) + \beta (k)\partial x(k)

6. check convergence criteria

may lead to large latencies in each PCG iteration [39]. This motivates us to consider
more scalable distributed algorithms, especially when the size and dimension of the
problem are very large.

The NLCG algorithm requires substantially less communication per outer it-
eration. NLCG performs explicit steps using gradients to update the model (see
Algorithm 2.2) and therefore avoids the communication that comes with solving the
GN system using an iterative method. In our experience, however, the method typi-
cally requires more iterations than the GN-PCG method in order to achieve a similar
level of accuracy (see sections 4.2 and 4.3). Since each gradient and objective function
evaluation requires at least N PDE solves, the large number of outer iterations ren-
ders the NLCG method less attractive for most large-scale PDE parameter estimation
problems.

3. Uncertainty-weighted consensus ADMM. In this section, we introduce
our uncertainty-weighted ADMM method. First, we present the general formulation
of the weighted ADMM, which involves rephrasing (2.10) as a global variable con-
sensus problem [6], and review the asynchronous implementation presented in [52].
We propose a novel scheme for selecting the weights, which is based on approxi-
mate uncertainty information of the local subproblems that we obtain similarly to
the framework in [12]. Finally, we use a numerical example to illustrate the intuition
behind the weights.

3.1. Weighted consensus ADMM. Motivated by the discussion in the previ-
ous section, we reformulate the optimization problem (2.10) as an equivalent weighted
global variable consensus problem

xMAP = argmin
\bfx 1,...,\bfx N ,\bfz 

N\sum 
j=1

(\Phi j(xj) +\scrR (xj))

s.t. Wj(xj  - z) = 0, j = 1, . . . , N,

(3.1)

where, in contrast to (2.10), the objective function is now separable and the coupling
is enforced in the constraints. Here, xj \in Rn are the local variables that are brought
into consensus via the global variable z \in Rn, and Wj \in Rn\times n are nonsingular weight
matrices. For ease of presentation and to obtain an efficient optimization scheme, this
work uses diagonal weight matrices. In the standard global consensus formulation [6],
the identity matrix is assigned as the weight matrices. This reformulation allows each
of the objective terms in (3.1) to be handled by its corresponding worker via the
consensus ADMM algorithm.
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S134 SAMY WU FUNG AND LARS RUTHOTTO

Consider the augmented Lagrangian defined by

\scrL \rho (x1, . . . ,xN ,u1, . . . ,uN , z)

=
N\sum 
j=1

\Phi j(xj) +\scrR (xj) + u\top 
j (Wj(xj  - z)) +

\rho 

2
\| Wj(xj  - z)\| 22.

(3.2)

Consensus ADMM aims at solving problem (3.1) by finding a saddle point of \scrL \rho via
the following iterations:

x
(k+1)
j = argmin

\bfx j

\scrL \rho (x
(k)
1 , . . . ,x

(k)
j - 1,xj ,x

(k)
j+1, . . . ,x

(k)
N ,u

(k)
1 , . . . ,u

(k)
N , z(k))

= argmin
\bfx j

\Bigl( 
\Phi j(xj) +\scrR (xj) + (u

(k)
j )\top Wjxj +

\rho 

2
\| Wj(xj  - z(k))\| 22

\Bigr) 
,(3.3)

j = 1, . . . , N,

z(k+1) = argmin
\bfz 
\scrL \rho (x

(k+1)
1 , . . . ,x

(k+1)
N ,u

(k)
1 , . . . ,u

(k)
N , z)

=

\biggl( N\sum 
j=1

W\top 
j Wj

\biggr)  - 1 N\sum 
j=1

\Bigl( 
W\top 

j Wjx
(k+1)
j + (1/\rho )Wju

(k)
j

\Bigr) 
,(3.4)

u
(k+1)
j = u

(k)
j + \rho Wj(x

(k+1)
j  - z(k+1)), j = 1, . . . , N,(3.5)

where k denotes the current iteration, uj \in Rn are the dual variables, and \rho > 0 is
the penalty parameter associated with the augmented Lagrangian term. In the first
two steps, we have simplified the augmented Lagrangian by dropping all terms that
enter the subproblems as constants. We note that the last step is a dual ascent step.

The minimization steps in (3.3) require PDE solves per function, gradient, and
Hessian evaluations, and are the most computationally challenging part of the algo-
rithm. However, they correspond to the local subproblems that are solved indepen-
dently by each worker. Another advantage is that the local subproblem can be solved
using any optimization algorithm, which provides an easy way to tailor the method to
different subproblems, e.g., subproblems containing different PDEs for which highly
optimized algorithms already exist. Consequently, ADMM sits at a higher level of
abstraction than classical optimization algorithms, such as those mentioned in sec-
tion 2.2. The global variable z attempts to bring the local variables xj into consensus
by averaging them in (3.4), and finally, the dual variables are updated via a gradient
ascent step in (3.5).

We use the stopping criteria in [6] to define the primal and dual residuals as

r(k+1) =
\Bigl( 
W1(x

(k+1)
1  - z(k+1)), . . . ,WN (x

(k+1)
N  - z(k+1))

\Bigr) 
and(3.6)

s(k+1) =  - \rho 
\Bigl( 
W1(z

(k+1)  - z(k)), . . . ,WN (z(k+1)  - z(k))
\Bigr) 
,(3.7)

respectively, and stop whenever

\| r(k)\| 2\leq \epsilon pri and \| s(k)\| 2\leq \epsilon dual(3.8)

for some chosen primal and dual tolerances \epsilon pri and \epsilon dual. It is also common to
adaptively choose the penalty parameter \rho . We use the scheme in [6], i.e.,

(3.9) \rho (k+1) =

\left\{   
\tau incr\rho (k) if \| r(k)\| 2> \mu \| s(k)\| 2,
\rho (k)/\tau decr if \| s(k)\| 2> \mu \| r(k)\| 2,
\rho (k) otherwise,
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UQ-WEIGHTED ADMM FOR PDE PARAMETER ESTIMATION S135

Algorithm 3.1 Consensus ADMM

\bullet initialize x
(0)
j , z(0), and u

(0)
j for j = 1, . . . , N

\bullet for k = 0, 1, 2, . . . until (3.8) holds

1. obtain x
(k+1)
j by solving local problems in (3.3) for j = 1, . . . , N

2. obtain z(k+1) using the averaging step (3.4)

3. obtain u
(k+1)
j through dual update (3.5) for j = 1, . . . , N

Algorithm 3.2 Consensus async-ADMM

\bullet initialize x
(0)
j , z(0), and u

(0)
j for j = 1, . . . , N

\bullet initialize Na and ka
\bullet while (3.8) not satisfied

1. solve (3.3) locally
2. perform averaging step (3.4) when Na workers report their solutions
3. update the corresponding Na dual variables (3.5)

where \mu > 1, \tau incr > 1, and \tau decr > 1 are parameters commonly chosen to be 10, 2,
and 2, respectively [6]. This updating scheme aims at balancing the primal and dual
residual norms within a factor of \mu of each other as they both converge to zero.

Parallelization of consensus ADMM is much more straightforward than that of the
GN-PCG described in section 2.2. The amount of communication per outer iteration
is reduced as we only communicate one set of models, x1, . . . ,xN per outer ADMM
iteration. In the synchronous parallel implementation, the master processor must wait
for all the workers to finish solving their corresponding subproblems in (3.3) before
performing the averaging step (3.4) per iteration, which may lead to high latencies
when some of the workers are much slower than others. The async-ADMM method
in [52] aims at reducing these latencies in star network topologies. Here, the global
averaging step (3.4) is performed when Na < N workers report their results. A
bounded delay condition is also enforced, where every worker has to report at least
once every ka iterations to ensure sufficient ``freshness"" of all updates. We note that
here we have better control of the overall amount of communication and latency since
we can administer how many forward problems to assign to any given worker and how
accurately to solve each subproblem.

Convergence results have been established for the synchronous ADMM algorithm
in the case where the local subproblems are convex. In this case, the algorithm con-
verges regardless of the initial choice \rho (0) [10, 25]. Even when solving (3.3) inexactly,
ADMM convergence can be shown [25, sect. 4]. For the asynchronous case, conver-
gence is ensured via the bounded delay condition. For nonconvex subproblems, it
has been shown that ADMM converges to a local minimum under some modest as-
sumptions, most importantly requiring \rho to be sufficiently large [26, 33, 50]. These
assumptions ensure that the Hessian of the Lagrangian of (3.1) remains positive def-
inite throughout the ADMM iterations.

3.2. Weight selection. We choose the weights to be approximately equal to the
inverse of the diagonals of the posterior covariance \Gamma j,post \in Rn\times n corresponding to the
jth objective term in (3.1). This is one way to assign higher weights to elements of xj

for which the jth subproblem contains more information. It also reduces the impact
of elements for which the data of the subproblem is uninformative. Clearly, there
are other options for transforming uncertainties into weights. Since we are mostly
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S136 SAMY WU FUNG AND LARS RUTHOTTO

interested in encoding large differences in the uncertainties between subproblems, we
do not compute the uncertainties with high accuracy.

As seen in (2.8), construction of the posterior covariance may not be tractable,
especially for large-scale PDE parameter estimation problems and when the forward
model is nonlinear. As a result, we follow the works of [12] for approximating the
posterior covariance of each objective term in a tractable way. This is done via a
low-rank approximation of the approximate Hessian of the misfit \Phi j in the following
manner:

1. We linearize the residual in \Phi j and obtain the GN approximation

Hj,mis \approx J\top 
j (\Gamma 

 - 1
j,noise)Jj ,(3.10)

where Jj \in Rmj\times n is the Jacobian matrix of \scrF j evaluated at some reference
model parameter, e.g., xref . We note that explicit construction of Hj,mis is
not necessary as we only need the action of Jj and J\top 

j on a vector.
2. Denoting the prior-conditioned approximate Hessian by

\~Hj,mis = \Gamma 
1/2
priorHj,mis\Gamma 

1/2
prior,

we rewrite the jth posterior covariance in (2.8) as

(3.11) \Gamma j,post = \Gamma 
1/2
prior

\Bigl( 
\~Hj,mis + I

\Bigr)  - 1

\Gamma 
1/2
prior.

3. We then construct a low-rank approximation of the prior-conditioned Hessian
using, e.g., randomized SVD [41] or Lanczos bidiagonalization [16] to obtain

(3.12) \~Hj,mis = V\Lambda V\top \approx Vr\Lambda rV
\top 
r ,

where \Lambda = diag(\lambda 1, . . . , \lambda n) \in Rn\times n and V = [v1, . . . ,vn] \in Rn\times n de-
note the matrix of eigenvalues and eigenvectors of \~Hj,mis, respectively, and
\Lambda r = diag(\lambda 1, . . . , \lambda r) \in Rr\times r and Vr = [v1, . . . ,vr] \in Rn\times r are their corre-
sponding truncations retaining only the r largest eigenvalues and eigenvectors.

4. We plug this approximation into (3.11) and use the Sherman–Morrison–
Woodbury formula [43] to obtain an expression for the inverse term,

(3.13)
\Bigl( 
\~Hj,mis + I

\Bigr)  - 1

\approx I - VrDrV
\top 
r +\scrO 

\Biggl( 
n\sum 

i=r+1

\lambda i

\lambda i + 1

\Biggr) 
,

where D \in Rr\times r = diag(\lambda 1/(\lambda 1 + 1), . . . , \lambda r/(\lambda r + 1)).
5. Finally, we obtain the following manageable approximation of the posterior

covariance that does not involve the inverse of the Hessian but that instead
involves the square root of the prior:

(3.14) \Gamma j,post \approx \Gamma 
1/2
prior(I - VrDrV

\top 
r )\Gamma 

1/2
prior.

We choose the weights to be the inverse of the diagonals of \Gamma j,post,

Wj = diag(\Gamma j,post)
 - 1,

\approx diag
\Bigl( 
\Gamma prior  - \Gamma 

1/2
prior

\bigl( 
VrDrV

\top 
r

\bigr) 
\Gamma 
1/2
prior

\Bigr)  - 1

,

=
\Bigl[ 
diag (\Gamma prior) - diag

\Bigl( 
\Gamma 
1/2
prior

\bigl( 
VrDrV

\top 
r

\bigr) 
\Gamma 
1/2
prior

\Bigr) \Bigr]  - 1

, j = 1, . . . , N,

(3.15)
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so that we get higher weights in parts of the model where we are more certain, and
vice versa. We note that to compute the diagonals of \Gamma j,post, we need to be able to

multiply by \Gamma 
1/2
prior and compute the diagonals of \Gamma prior = (L\top L) - 1 efficiently. In our

experiments, we are mainly concerned with the case when L\top L is either a diagonal or

a biharmonic operator. In the diagonal case, multiplying by \Gamma 
1/2
prior and computing the

diagonals of \Gamma prior is trivial. In the case where we use the biharmonic operator, we
have access to the spectral decomposition of L\top L using Fourier transforms [23], which

allows us to efficiently multiply by \Gamma 
1/2
prior. We can also quickly estimate the diagonals

of \Gamma prior using probing methods [46], extrapolation methods [11], stochastic methods
[2], and domain decomposition methods [30, 31, 45]. We may also update the weights
throughout the ADMM scheme so that we instead employ local approximations of
our posterior PDF [7]; however, convergence in this case is not guaranteed. When
the nonzero diagonal elements of Wj are equal to one, the weighted ADMM method
corresponds to the standard unweighted ADMM scheme, which is known to converge
slowly [6]. One reason is because the averaging step in (3.4) gives equal weight to all
elements of xj for all j = 1, . . . , N , leading to poor reconstructions of z, especially in
the early iterations. To illustrate this, we perform the following example.

Example 1. Consider solving the trivial linear system Ix = y with the weighted
and unweighted consensus ADMM with N = 4 splittings, where I \in Rn\times n is the
identity matrix, and x,y \in Rn are the model and the observed data, respectively. We
formulate the least-squares problem as

argmin
\bfx j ,\bfz 

4\sum 
j=1

\biggl( 
1

2
\| Ijxj  - yj\| 22+

\alpha 

2
\| xj\| 22

\biggr) 
(3.16)

s.t. Wj(xj  - z) = 0, j = 1, . . . , 4,(3.17)

where \alpha = 10 - 2, and Ij \in R(n/4)\times n and yj \in Rn/4 are subsets of the data obtained
by partitioning the rows of I and y corresponding to the pixels in the top left, top
right, bottom left, and bottom right quadrant of the domain as seen in Figure 3.1.
We show the averaged reconstruction of both methods during the first iteration in
Figure 3.1.

We note that the forward model in Example 1 is separable, and the weights
can intuitively and easily be designed by hand. This example shows that we have
a principled way to construct the weighted scheme that corresponds to manually
choosing the weights in the cases that are as obvious as this example. In general,
however, it is not always possible to manually design the weights, as the forward
operators are not always separable.

4. Numerical experiments. In this section, we outline the potential of the
weighted scheme for consensus ADMM as well as its asynchronous variant on a series
of linear and nonlinear inverse problems. We first experiment on a deblurring and
a tomography problem from Regtools, a MATLAB package containing discrete ill-
posed inverse problems [22], as well as from a collection of linear least-squares problems
from the UF (University of Florida) Sparse Matrix Collection [9]. We then test our
method on the following larger 3D PDE parameter estimation problems: a single-
physics parameter estimation problem involving a travel time tomography survey,
and a multiphysics parameter estimation problem involving DCR and travel time
tomography. We conclude this section with a comparison in the communication among
the algorithms used for the multiphysics problem.
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x
(1)
1 x

(1)
2 z(1) unweighted

x
(1)
3 x

(1)
4 z(1) weighted

Fig. 3.1. Averaging step of the weighted and unweighted consensus ADMM for Example 1.
In this case, W1 assigns higher weights to the pixels in the upper left quadrant of x1, W2 assigns
higher weights to the upper right quadrant of x2, etc. As a result, the weights educate the averaging
step, leading to a better reconstruction of the image.

4.1. Least-squares. We begin by comparing the weighted and unweighted con-
sensus ADMM on a series of linear least-squares problems from Regtools [22] and the
UF Library Sparse Matrix Collection [9]. For these problems, we use N = 4 splittings
and solve

argmin
\bfx j ,\bfz 

4\sum 
j=1

\biggl( 
1

2
\| Ajxj  - yj\| 22+

\alpha 

2
\| xj\| 22

\biggr) 
s.t. Wj(xj  - z) = 0, j = 1, . . . , 4,

(4.1)

where similarly to Example 1, Aj \in R(m/4)\times n and yj \in Rm/4, j = 1, . . . , 4, are
chosen by partitioning the rows of the original matrix and the data, A \in Rm\times n and
y \in Rm, respectively. For the deblurring and tomography problems from Regtools,
we use the same splittings as in Figure 3.1, where we split the rows corresponding
to the different quadrants of the image. For the non–image-based problems from the
UF library, A1 and y1 correspond to the first m/4 rows of A and y, respectively, A2

and y2 correspond to the second m/4 rows of A and y, respectively, and so on. In
the case when the number of rows, m, is not divisible by 4, we round accordingly.

We add a smallness regularization term with \alpha = 10 - 2 since the splittings Aj

in our experiments are underdetermined (m/4 < n), leading to rank-deficient coeffi-
cient matrices A\top 

j Aj arising from the normal equations. We set the initial penalty

parameter to \rho (0) = 5 and use the adaptive scheme described in (3.9). We run the
unweighted and weighted consensus ADMM for 10 iterations and show comparisons
of the relative residuals and relative errors. To compute the weights, we follow the
procedure in section 3.2 and compute a rank-10 approximation of the Hessian of the
misfits using the MATLAB function eigs.

We observe larger performance gains through the weighted ADMM in the deblur-
ring problem compared to the tomography problem. In the deblurring problem, the
weights are concentrated in different non–overlapping parts of the domain (see Figure
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\bfo \bfb \bfs \bfe \bfr \bfv \bfe \bfd \bfd \bfa \bft \bfa \bfg \bfr \bfo \bfu \bfn \bfd \bft \bfr \bfu \bft \bfh \bfw \bfA \bfD \bfM \bfM \bfu \bfA \bfD \bfM \bfM 

\bfd 
\bfe 
\bfb 
\bfl \bfu 
\bfr \bfr 
\bfi \bfn 
\bfg 

\bfr \bfe \bfl \bfe \bfr \bfr \approx 1.27e-01 \bfr \bfe \bfl \bfe \bfr \bfr \approx 2.99e-01

\bfW 1 \bfW 2 \bfW 3 \bfW 4

\bfW 
\bfe 
\bfi \bfg 
\bfh 
\bft \bfs 

Fig. 4.1. Observed data, ground truth, and reconstructions (first row) after 10 iterations and
weights (second row) for the deblurring problem from Regtools [22].

\bfo \bfb \bfs \bfe \bfr \bfv \bfe \bfd \bfd \bfa \bft \bfa \bfg \bfr \bfo \bfu \bfn \bfd \bft \bfr \bfu \bft \bfh \bfw \bfA \bfD \bfM \bfM \bfu \bfA \bfD \bfM \bfM 

\bft \bfo 
\bfm 
\bfo 
\bfg 
\bfr \bfa 

\bfp 
\bfh 
\bfy 

\bfr \bfe \bfl \bfe \bfr \bfr \approx 3.49e-01 \bfr \bfe \bfl \bfe \bfr \bfr \approx 3.75e-01

\bfW 1 \bfW 2 \bfW 3 \bfW 4

\bfW 
\bfe 
\bfi \bfg 
\bfh 
\bft \bfs 

Fig. 4.2. Observed data, ground truth, and reconstructions (first row) after 10 iterations and
weights (second row) for the tomography problem from Regtools [22].

4.1), leading to more efficient averaging. For the tomography problem, however, the
weights look similar and contain a substantial amount of overlap, leading to averaged
reconstructions that are similar to those of the unweighted ADMM (see Figure 4.2).

Finally, for the UF matrices, we randomly take 30 matrices with dimensions
100 \leq m,n \leq 1000 from the library and compare both methods in Table 4.1 after 10
iterations. We report their condition numbers, relative residuals, and relative errors.
We obtain better results with the weighted ADMM after 10 iterations. We refrain
from solving these problems in parallel since they are small 2D problems and are
mainly used as a proof-of-concept.

4.2. Single-physics parameter estimation. As a more realistic test problem,
we consider the 3D SEG/EAGE model [1] as the ground truth (see Figure 4.4b) and
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S140 SAMY WU FUNG AND LARS RUTHOTTO

Table 4.1
Comparison of the accuracy obtained using the unweighted and weighted ADMM applied to

least-squares problems from the UF Sparse Matrix Collection [9]. The first and second columns
show the name and condition number of the matrices. The third and fourth columns show the
relative residuals of the unweighted and weighted ADMM at iteration 10, respectively. The fifth
and sixth columns show the relative errors of the unweighted and weighted ADMM at iteration 10,
respectively.

UF Sparse Matrix Collection Results
Unweighted ADMM Weighted ADMM

Matrix Cond \# Residual Relative error Residual Relative error
bcspwr03 5.01e+02 4.47e-02 2.58e-01 1.97e-02 1.63e-01
bcsstk03 6.79e+06 6.67e-01 9.99e-01 5.82e-01 9.91e-01
bcsstk19 1.34e+11 2.81e-01 9.01e-01 6.30e-02 8.62e-01
bfwb782 1.81e+01 4.94e-02 1.04e-01 2.83e-01 1.38e-01
can 229 4.01e+17 5.13e-02 2.10e-01 1.81e-02 1.46e-01
cavity02 8.12e+04 6.07e-01 9.33e-01 2.46e-01 7.83e-01
cavity03 5.85e+05 5.69e-01 9.01e-01 1.90e-01 7.34e-01
ch5-5-b4 1.00e+00 1.21e-01 9.85e-01 5.01e-03 9.84e-01
dwt 307 2.35e+18 8.92e-02 1.82e-01 2.23e-02 9.20e-02
football 3.74e+02 5.90e-02 4.88e-01 2.44e-02 3.58e-01
fs 183 3 3.27e+13 7.33e-02 1.00e+00 2.32e-02 1.00e+00
G23 1.00e+04 2.27e-02 2.63e-01 1.88e-02 2.55e-01

GD98 c 9.87e+16 7.78e-02 3.70e-01 5.13e-02 2.62e-01
gre 115 4.97e+01 2.77e-01 4.70e-01 7.64e-02 2.67e-01
gre 343 1.12e+02 1.18e-01 1.77e-01 4.48e-02 6.90e-02

grid1 dual 3.35e+16 3.74e-02 3.67e-01 2.56e-02 3.20e-01
impcol d 2.06e+03 3.50e-01 7.07e-01 9.74e-02 3.94e-01
jpwh 991 1.42e+02 1.89e-01 8.81e-01 1.61e-01 8.66e-01

lowThrust 1 Inf 4.40e-01 9.96e-01 2.84e-01 9.82e-01
lund a 2.80e+06 1.06e-01 5.99e-01 4.05e-02 5.65e-01
nos3 3.77e+04 5.27e-01 9.88e-01 2.22e-01 9.67e-01

odepa400 2.26e+05 4.91e-01 9.99e-01 1.86e-01 9.97e-01
pde900 1.53e+02 5.98e-01 9.82e-01 2.90e-01 9.39e-01

poisson2D 1.33e+02 3.33e-01 7.44e-01 8.03e-02 6.64e-01
polbooks 7.20e+02 3.72e-02 2.97e-01 2.30e-02 2.51e-01
problem1 3.11e+16 4.08e-01 9.11e-01 1.43e-01 8.24e-01
rdb200l 1.33e+02 8.68e-02 1.44e-01 1.91e-02 1.05e-01
str\.0 2.74e+02 8.46e-01 9.37e-01 4.04e-01 7.02e-01
TF10 7.34e+02 2.63e-01 4.82e-01 5.21e-02 2.85e-01

young1c 4.15e+02 6.39e-01 9.40e-01 3.59e-01 6.97e-01

test our method for a single-physics inversion involving the travel time tomography
survey. The model contains a salt dome in which the velocity is significantly higher
than in the background. The domain is of size 13.5 km \times 13.5 km \times 4.2 km and is
divided into 64\times 64\times 32 mesh cells equally sized at approximately 211m\times 211m\times 11m.
We implement our experiments in an extension of jInv [39], an open-source package
for PDE parameter estimation written in Julia [4]. For brevity, since the travel time
tomography problem is modeled by the Eikonal equation, we refer to it as the Eikonal
problem for the remainder of the paper. We solve these problems in parallel and
experiment on the effect of the asynchronous variant (async-ADMM) on the weighted
and unweighted consensus ADMM.

The PDE involved in the forward problem is the Eikonal equation (see Table 4.2),
and it is solved using the Factored Eikonal Fast Marching Algorithm [48]. We solve the
inversion using 36 sources and 3600 receivers located on the top surface of the domain.
We compare the weighted and unweighted ADMM (wADMM and uADMM), their
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Table 4.2
PDEs corresponding to two different geophysical imaging techniques: (a) DCR, and (b) travel

time tomography. Here, uj : \Omega \rightarrow R is the potential field that evolves from the jth source, qj : \Omega \rightarrow R,
which is a dipole placed on the earth's surface, and x0 is the origin. In the travel time tomography
experiment, | \cdot | is the Euclidean norm, and \tau j : \Omega \rightarrow R is the travel time of the wave that propagates
from a point source located at xj , for which the travel time is 0. To jointly fit travel time and
DC-resistivity data, we assume known petrophysics [42], so that we have a relation between the wave
velocity v and the ground conductivity \sigma as shown in (4.2).

(a) DC resistivity (b) Travel time tomography

\nabla \cdot 
\Bigl( 
\sigma (v(x))\nabla uj

\Bigr) 
= qj(x) in \Omega | \nabla \tau j | 2= v(x) in \Omega 

\nabla uj \cdot \vec{}n = 0 on \partial \Omega \tau j(xj) = 0
uj(x0) = uj,0

asynchronous variants (async-wADMM and async-uADMM), GN, and NLCG. For all
six algorithms, we use a biharmonic regularization with regularization parameter \alpha =
10 - 1 to enforce smoothness. We solve all inversions in parallel using 10 workers. Here,
six workers solve forward problems containing four sources each, and the remaining
four workers solve forward problems containing three sources each.

We run the GN inversion for a maximum of 30 outer iterations and use at most 10
PCG iterations with PCG stopping tolerance of 10 - 1 to solve the GN system. For the
NLCG inversion, we set a maximum of 100 outer iterations since it is expected to take
more iterations than GN to reach the same accuracy. In the ADMM inversions, we run
a total of 10 outer iterations with three GN iterations used to solve the subproblems.
This particular choice of inner GN and outer ADMM iterations aims to balance the
runtime and computations performed with those of the GN inversion while avoiding
solving the subproblems too inexactly, as this may lead to a lack of convergence. In
the ADMM subproblems, each GN iteration also uses at most 10 PCG iterations with
PCG stopping tolerance of 10 - 1 as in the GN inversion.

For the penalty parameter, we use the scheme described in (3.9) to vary \rho and use
a lower bound of 10 - 12. As expected, the performance of ADMM depends crucially on
the initial choice of \rho ; therefore, we report the best results obtained from initial values
of \rho (0) \in [10 - 8, 102]. In our experiment, the optimal initial values are \rho (0) = 10 - 7 for
uADMM and \rho (0) = 10 - 4 for wADMM. In the asynchronous case, we perform a global
update whenever Na = 5 workers report their solutions, and we enforce the bounded
delay condition by requiring all workers to report results at least once every ka = 4
iterations. To compute the weights, we follow the procedure described in section 3.2,
where we use the Lanczos bidiagonalization algorithm from KrylovMethods [38] to
compute a rank-5 approximation of the approximate Hessians of the data misfits.
To estimate the diagonal of the prior covariance, we perform 1000 iterations of the
stochastic estimator proposed in [2] based on Hutchinson's technique for estimating
the trace of a matrix. These iterations can be performed very efficiently as we have
the spectral decomposition of the biharmonic operator. Again, we note that highly
accurate uncertainties are not necessary in our case, and a good guess is sufficient for
our experiments. The computation of the weights took about 31 seconds.

In Figure 4.3(a),(b), we show the relative errors and misfits for the Eikonal prob-
lem. Although the relative error does not improve during the iterations for any of
the methods, we point out that the reconstructions visually become similar to the
ground truth; see Figure 4.4(c),(h). The impact of communication and latency on the
difference in runtimes between asynchronous ADMM variants, which ran for about
15 minutes, and the GN-PCG, which ran for about 38 minutes, is evident. For the
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(a) Eikonal Objective Function
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(b) Eikonal Relative Errors
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(c) Joint Objective Function
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runtime (mins)

0.14

0.16

0.18

(d) Joint Relative Errors

GN

NLCG

wADMM

uADMM

async-wADMM

async-uADMM

Fig. 4.3. Objective function and relative errors for the Eikonal and joint inversions using six
different algorithms: GN, NLCG, uADMM, wADMM, async-uADMM, and async-wADMM. Here,
the x-axis represents runtime in minutes. The experiments were run on a shared memory computer
operating Ubuntu 14.04 with two Intel Xeon E5-2670 v32.3 GHz CPUs, each using 12 cores and a
total of 128 GB of RAM. Here, Julia is installed and compiled using the Intel Math Kernel Library.

NLCG, a total of 68 iterations were performed before a linesearch fail was reached. As
expected, an iteration from the NLCG method is much quicker than an iteration from
the remaining five methods since each NLCG iteration only requires explicit steps to
update the model.

4.3. Multiphysics parameter estimation. We now add a second modality
to section 4.2, the DCR survey, which is modeled by the steady-state heterogeneous
diffusion equation (see Table 4.2), and consider a multiphysics inversion. Here, we
keep the same settings for the Eikonal problem and use 32 sources and 1682 receivers
located on the top surface of the domain for the DCR survey. To solve the DCR
forward problem, we use the finite volume method described in [17] to discretize the
problem, and we solve the linear system using Julia's direct solver. For simplicity,
we assume known petrophysics [42], which gives us an explicit relation between the
ground conductivity \sigma and the wave velocity v given by

(4.2) \sigma (v) =
\Bigl( 
2 - v

c

\Bigr) \biggl( b - a

2
(tanh(10(c - v)) + 1) + a

\biggr) 
.

Here, a and b are the conductivity values set to 0.1 and 1.0, respectively, and c = 3.0
is the velocity in which the contrast is centered. This setup was also used in [39].D
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(a) reference model (b) ground truth

Eikonal Reconstructions

(c) GN (d) wADMM (e) uADMM

(f) NLCG (g) async-wADMM (h) async-uADMM

Joint Reconstructions

(i) GN (j) wADMM (k) uADMM

(l) NLCG (m) async-wADMM (n) async-uADMM

Fig. 4.4. Reconstructions of SEG model with single-physics and multiphysics experiments.

D
ow

nl
oa

de
d 

06
/2

9/
20

 to
 1

70
.1

40
.1

42
.2

52
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S144 SAMY WU FUNG AND LARS RUTHOTTO

As in section 4.2, we compare six algorithms: wADMM, uADMM, async-wADMM,
async-uADMM, GN-PCG, and NLCG. We solve all the inversions in parallel using
ten workers. The PDE operator in the DCR experiment is small enough to be factor-
ized in a single worker with a direct solver. In this case, it is not worth parallelizing
the problem since communication takes longer than solving for all sources in one
worker. For larger problems, where the DCR problem must instead be solved iter-
atively, however, distributing the DCR sources among different workers will lead to
faster time-to-solution. In contrast, the Eikonal problems are solved with a sequential
fast marching scheme [48], and thus we distribute the problems among the remain-
ing nine workers. The nine workers in charge of the Eikonal problem solve forward
problems, each containing four sources. The inversion settings are also the same as
in section 4.2 except for the choice of initial penalty parameter, where we find the
optimal initial values to be \rho (0) = 10 - 3 for uADMM and \rho (0) = 1.0 for wADMM. We
also follow the same procedure as in section 4.2 to compute the weights for this setup,
which took about 54 seconds.

We show the results for the relative errors and objective function values vs. run-
time for the joint inversions in Figure 4.3 and the reconstructions in Figure 4.4. We
see that the weighted schemes improve the convergence and reconstruction quality
of its unweighted counterparts. In fact, we obtain similar reconstruction accuracy
between the GN scheme and the synchronous weighted ADMM (see Figure 4.3(d));
we highlight the considerable progress made by the ADMM method in the first few
iterations, as this is not very common for small problems that can be held in the
memory of a few machines. We also obtain faster convergence using the asynchronous
ADMM variants, with the weighted asynchronous ADMM leading to a similar qual-
ity of reconstruction, as can be seen in Figure 4.4. As expected, the joint inversions
enhance the quality of the reconstruction since the different physics involved capture
different properties of the model [39].

4.4. Communication costs. We use the multiphysics example to exemplify the
differences in terms of communication costs for the GN, NLCG, and ADMM methods.
As discussed in section 4.3, we assign worker 1 the DCR problem containing all of its
32 forward models, and assign each of the remaining nine workers (2–10) four Eikonal
forward models. In the comparison below, the vectors communicated between the
workers and the master process are of size 131072 \times 1.

GN. We use 30 GN iterations, each of which involves up to 10 PCG iterations per
GN iteration. In each GN iteration, the master process sends the current model to all
ten workers. Worker 1 then returns the accumulated gradient vector corresponding
to the 32 DCR forward problems, and each of workers 2–10 returns the accumulated
gradient vector for the four local sources. This allows for the computation of the full
gradient shown in (2.11).

Moreover, in each PCG iteration, the master process sends one vector to all
workers. The workers then return the accumulated matrix-vector product of this
vector with the approximated Hessians associated with the local subproblems (DCR
for worker 1 and Eikonal for workers 2–10). This leads to a total of 20 vectors
communicated between the master and the workers per PCG iteration. Overall, the
GN method consists of

10 workers\times (2 gradient vectors + 20 PCG vectors) \times 30 GN iterations = 6600

vectors communicated between the workers and the master process.
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NLCG. We run NLCG for a maximum of 100 iterations. The communication
pattern is the same as in the GN method except that no inner PCG iterations are
performed. Thus, the NLCG inversion consists of

10 workers\times 2 gradient vectors\times 100 NLCG iterations = 2000

vectors communicated between the workers and the master process.
sync-ADMM. We run a total of 10 outer ADMM iterations. In each ADMM

iteration, the master process sends the current global variable z(k) to all workers. Each

worker then returns its corresponding local variable x
(k+1)
j to the main process. This

leads to a total of two vectors communicated between each worker and the master
process per ADMM iteration. The sync-ADMM inversion thus consists of

10 workers\times 2 vectors\times 10 ADMM iterations = 200

total vectors communicated between the workers and the master process.
async-ADMM. As in sync-ADMM, we run a total of 10 ADMM iterations.

However, we update the global variable whenever four workers report their solution.
As a result, the async-ADMM inversion consists of

4 workers\times 2 vectors\times 10 ADMM iterations = 80

total vectors communicated between the workers and the master process.
The communication comparison described above confirms that ADMM dramati-

cally reduces the amount of communication in the inversion. This is also seen in the
reduced runtimes in Figure 4.3. A similar comparison can be made for the single-
physics parameter estimation problem in section 4.2.

5. Conclusion. We propose a weighted asynchronous consensus ADMM (async-
wADMM) method for solving large-scale PDE parameter estimation problems in par-
allel. To this end, the data involved in the problem is divided among the available
workers. Our scheme is geared toward applications such as PDE parameter estima-
tion, where only a few iterations can be afforded. Our proposed weighting scheme
improves the convergence of the standard ADMM. Since our weights are informed by
an approximate uncertainty quantification for the subproblems in (3.3), we formulate
the parameter estimation problem in a Bayesian setting. It is important to note that
our scheme can also be applied in the frequentist setting as long as weights are avail-
able. To obtain an overall efficient scheme, we follow the work of [12] to quantify the
uncertainties in a tractable manner.

As test problems, we use a collection of linear least-squares problems for proof-of-
concept, a more realistic single-physics problem involving the travel time tomography
survey, and a multiphysics parameter estimation problem involving the DCR and
travel time tomography survey. Our numerical results show that our method ac-
celerates the convergence of consensus ADMM, particularly in the early iterations.
The quality of the parameter reconstructions obtained by the weighted async-ADMM
scheme is comparable to that of the GN-PCG method; however, the weighted async-
ADMM method requires substantially less communication among workers and has
smaller latencies, resulting in reduced inversion runtimes and less communication.
Moreover, since we can choose any optimization scheme to solve the subproblems in
async-ADMM, the method sits at a higher level of abstraction and provides addi-
tional flexibility. Each subproblem can, therefore, be solved with a tailored solver,
making the weighted async-ADMM especially attractive for large-scale multiphysics
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PDE parameter estimation problems. For brevity, we do not show the case where
the weights are computed in every iteration; however, in this case, we obtain recon-
structions that are indiscernible from those shown in Figure 4.4. We intend to further
explore our method for the case where the weights are correlated (nondiagonal), for
large-scale problems where the GN-PCG method cannot be used, and on computa-
tional environments with small communication bandwidth such as cloud computing
platforms.
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